
Journal of Computational Physics162,104–122 (2000)

doi:10.1006/jcph.2000.6527, available online at http://www.idealibrary.com on

A Level-Set Method for Simulating
Island Coarsening

D. L. Chopp1

Engineering Sciences and Applied Mathematics Dept., Northwestern University, Evanston, Illinois 60208
E-mail: chopp@nwu.edu

Received December 23, 1996; revised August 5, 1997

Modeling of microstructural evolution during thin-film deposition requires a knowl-
edge of several key activation energies (surface diffusion, island edge atom diffusion,
adatom migration over descending step edges, etc.). These and other parameters must
be known as a function of crystal orientation. In order to generate values for these
parameters, we have developed a numerical simulation in tandem with physical ex-
periments. By tuning the simulation to the results from experiments we can extract
and verify approximate values for these parameters. The numerical method we use
is based upon the level set method. Our model is a continuum model in directions
parallel to the crystal facet, and resolves each discrete atomic layer in the normal
direction. The model includes surface diffusion, step edge dynamics, and attach-
ment/detachment rates all of which may depend upon the local geometry of the
step edge. The velocity field for advancing the island edges in the level set frame-
work is generated by computing the equilibrium adatom density on the flat terraces
resulting in Laplace’s equation with mixed boundary conditions at the step edges.
We have turned to the finite element method for solving this equation, which re-
sults in very good agreement with analytically known solutions and with experi-
ment. c© 2000 Academic Press

1. INTRODUCTION

Modeling of microstructural evolution during thin-film deposition requires knowledge
of several key activation energies (surface diffusion, island edge atom diffusion, adatom
migration over descending step edges, etc.). These and other parameters must be known as a
function of orientation. In order to generate values for these parameters, we have developed
a numerical simulation in tandem with physical experiments. By tuning the simulation to
results from experiments we can extract and verify approximate values for these parameters.
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The physical experiments to which we compare are the annealing of a very flat, about
10 atomic layers variation, sample of TiN. This material is often used, for example, as a
diffusion barrier in semiconductor manufacturing. By studying the decay rate of various
islands and voids in different initial configurations on the surface, we can extract the key
activation energies by matching experiment to computed solutions of the mathematical
model. By tuning the parameters, we get the mathematical model to agree with the exper-
iment and thereby deduce the value of the different parameters. While we are using TiN,
this procedure could be repeated for a wide variety of important materials provided the
availability of experimental data.

The numerical method we use is based upon the level set method. Our model is a con-
tinuum model in directions parallel to the crystal facet, and resolves each discrete atomic
layer in the normal direction. The model includes surface diffusion, step edge dynamics,
and attachment/detachment rates all of which may depend upon the local geometry of the
step edge.

The velocity field for advancing the island edges in the level set framework is generated
by computing the equilibrium adatom density on the flat terraces resulting in Laplace’s
equation with mixed boundary conditions at the step edges. The step edge velocity is then
derived from the normal derivative of the adatom density. Thus, it is important that we
achieve accurate approximations for the adatom density up to the step edges. To achieve
this accuracy we have turned to a finite element method for solving the elliptic equation. This
results in very good agreement with analytically known solutions. This gives us confidence
that the derived value of the material parameters will have reasonable accuracy.

In this paper we present the details of the numerical aspects of this project. In Section 2,
we discuss previous work in this area. In Section 3, we present an overview of the physical
experiment and describe the mathematical model we will be using to simulate the experi-
mental conditions. In Section 4, we give an overview of our numerical method including
brief overviews of the level set and finite element methods. In Section 5, we demonstrate the
accuracy of our method and give example comparisons between simulation and experiment.
The work of extracting all the physical parameters using this simulation is in progress and
will be reported elsewhere.

2. BACKGROUND

Modeling the relaxation of atomic scale features of small islands and clusters of islands on
the surface of a condensed phase of material has been the subject of research for many years.
However, it was not until the arrival of atomic scale microscopy that it became possible
to study and analyze the behavior of individual islands and the interaction of islands. The
analysis at this level will lead to improvements in the study of, for example, deposition,
epitaxial growth, and sintering.

Much of the analysis in this area derives from the study of Ostwald ripening. Overviews
of the research of Ostwald ripening and island dynamics can be found in the review articles
[45, 47]. Early work on diffusion processes in the context of Ostwald ripening include for
example [8, 15, 22]. The focus of attention on individual mono-atomic islands and their
interaction is more recent. Experimental investigations of adatom island migration and
diffusion can be found in [12, 31, 43] and analysis and simulation can be found in [7, 20,
24, 39, 27]. Experimental investigations into step-edge motion and adatom island decay can
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be found in, for example, [5, 13, 17, 18, 26, 32, 40, 43]. Analysis and simulation of island
decay can be found in [25, 44, 48].

The rate of decay or growth of individual islands during annealing is often dominated
by one of two different rate-limiting steps. For diffusion-limited kinetics, adatoms are able
to attach and detach from step edges easily compared with their rate of diffusion on the
terraces. This leads to, for example, larger adatom densities around convex islands. For
detachment-limited kinetics, the rate-limiting step is the formation energy required for an
adatom to detach from a step edge. In this regime, the adatoms, once they detach, very
quickly locate a new attachment site. This leads to a low, nearly constant, adatom density
on the terraces.

One way the two regimes can be distinguished experimentally is by the growth and
decay of individual islands within a cluster. For diffusion-limited kinetics, there is greater
dependence on the surrounding island configuration due to the large variation in the local
adatom density. This can be observed experimentally by noticing that large islands exhibit
“denuding zones” where small islands neighboring a large island decay more rapidly than
those of the same initial size further away. Denuded zones have been observed, for example,
in [28]. Detachment-limited kinetics, by contrast, results in more localized decay rates
independent of the surrounding island configuration.

The class of materials that we are investigating assume diffusion-limited kinetics. Mate-
rials observed to exhibit diffusion-limited kinetics include copper (111) [14], silver (111)
[26], and titanium nitride (002) [19]. Materials observed to exhibit detachment-limited
kinetics include gold (111) [32], copper (100) [18], copper (001) [17], and silicon (001)
[6].

Our model also includes the Ehrlich step edge barrier. The Ehrlich barrier at step edges
is based on the observation that the energy required to go over the step edge is greater
than the energy required to jump to a different site on the same terrace. It was observed
experimentally by Ehrlich and Hudda [11] and also studied by Schwoebel and Shipsey
[33]. The barrier explains that it is less probable that an adatom will go down the step
than to remain on the same terrace, and even less likely for an adatom to go up a step to a
higher terrace. Figure 1, an illustration similar to that found in [33] illustrates the adatom
potential energy function and the Ehrlich barrier. The strength of the Ehrlich barrier is key

FIG. 1. Illustration of the adatom potential function and the Ehrlich barrier.
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to predicting the surface roughness during deposition. Evidence of the importance of the
Ehrlich barrier in the model can be found, for example, in [26].

Numerical simulations of island motion and decay include using a modified meanfield
theory [6], a nearest neighbor island interaction model [27], kinetic Monte Carlo [40, 28,
24, 25], molecular dynamics [20], and level sets [16].

The algorithm presented here is capable of modelling much more complex initial island
configurations, as seen experimentally, than the non-level set methods mentioned above.
Initializing the method requires only an STM image and a few minutes using the public
domain NIH image program [29] to color the different atomic layer heights.

For example, in [27], Morgensternet al.are able to model multiple islands and produce
very good qualitative comparisons to experiment, but they admit that matching to experiment
would be difficult because the construction of the flux functions results in a consistent
underestimate for the flux and must be compensated for by overestimating the diffusion
rate. This makes their method unsuitable for the parameter estimation task before us. They
also note that mean-field theory is inadequate for predicting island decay rates. The method
presented here is not based on mean-field theory; instead a more complete flux function is
constructed which produces a more accurate representation of the flux over the length of
the step edges.

There are some key distinctions between the method presented here and the approach used
in [16]. First, the representation of the islands is done with level set functions for each atomic
layer as opposed to a single level set function as in [16]. While there is some additional cost
due to the multiple level sets, it is offset by the greater accuracy of the representation and the
edge velocities when multiple step edges at different heights are close together. Second, and
most important, the use of level sets coupled with finite elements is a way to more accurately
compute the adatom density on the terraces resulting in improved approximations for the
step edge velocity.

The coupling of level sets and finite elements in this way is a relatively new approach
with much potential beyond the current application. A simple example where it has been
applied is in mechanical stress calculations as found in [42] and is being extended to solve
problems of crack propagation in solids.

3. MATHEMATICAL MODEL

Elements of the model we use for our simulation can be found in the analyses of Villain
[44], Zinke-Allmanget al. [48], and McLeanet al. [25] which in turn rely on the Lifshitz-
Slyozov theory [22]. For this simulation we assume the process is in the diffusion-limited
regime, meaning that the rate-limiting step in the diffusion process is due to the diffusion
of adatoms on the open terraces. However, the diffusion process is fast enough that we can
assume the adatom density on the terraces is always near equilibrium. Since there is no
deposition of atoms onto or evaporation of atoms off of the surface, there are no sources or
sinks on the open terraces away from step edges. Therefore, the equilibrium adatom density
on the terraces is determined by Laplace’s equation,

1ρ = 0.

Furthermore, we assume that the adatom density at one terrace height is not influenced
by the adatom density at other terrace heights. Thus, we decompose our computational
domain into a collection of independent Laplace problems, one for each terrace bounded
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FIG. 2. Illustration of the decomposition of the domain.

by step edges. We illustrate this decomposition in Fig. 2. From here on we refer to a single
connected terrace bounded by step edges as a terrace domain.

The flux of adatoms to and from a terrace domain occurs entirely at the step edges, leading
to mixed boundary conditions at the step edges. There are two types of steps to demark the
boundary of the domain: up steps and down steps. The boundary conditions for the Laplace
equation are different depending upon which type of step.

For an up step, we refer to the analysis presented in [25] to get the up step boundary
condition given by

D
∂ρ

∂n
= −K

(
ρeq

r − ρ
)
,

whereD is the surface adatom diffusion rate,K is the adatom attachment rate, and

ρeq
r = ρeq

∞ exp

(
γÄ

kTr

)
, (1)

as given by the Gibbs–Thompson relation. Here,n is the normal to the terrace domain at
the step edge pointing towards the lower terrace level (see Fig. 2),r is the local radius of
curvature (r > 0 for convex step edge),γ is the line tension,Ä is the surface area covered
by a single diffusing species,k is the Boltzmann constant, andT is the temperature of the
simulation. The constantρeq

∞, as given in [25], is the adatom density at a straight step edge
(r =±∞). The values ofD andρeq

∞ in turn depend on the annealing temperature by the
relations

D = D0 exp

(−Ed

kT

)
ρeq
∞ = C0 exp

(−E f

kT

)
,

whereEd is the surface diffusion barrier andE f is the adatom formation energy.
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For a down step, we assume the presence of an Ehrlich barrier which inhibits adatoms
from stepping down to the next atomic layer. While this barrier is not strong, it can play
a role in the microstructural evolution, so we include it in our model. We assume that a
certain fraction of the adatoms approaching a step edge successfully overcome the barrier
and go down to the next lower terrace level and attach to the step edge. Therefore, we get a
boundary condition for the down steps to be

D
∂ρ

∂n
= −αρ

whereα is the fraction of adatoms that will successfully overcome the barrier.
Note that we have set the equilibrium adatom density at the down step to be zero. This is

consistent with the conventional form of the diffusion barrier (see Fig. 1) where there is no
assumed retention of adatoms at the top of a down step. It is observed in [21] that the actual
condition at the down step may be more complicated, and there can be some retention of
adatoms at the top of down steps of some materials. Adding this feature to the model would
change the down step boundary condition to

D
∂ρ

∂n
= α(ρ̃eq− ρ)

where ˜ρeq would be the equilibrium density of adatoms at the top of step edges. The
algorithm presented here can easily be modified to incorporate this change.

Note also that for a free adatom on one terrace to migrate to the next lower terrace and
become a free adatom on the terrace below, it must first overcome the Ehrlich barrier and
attach to the lower step edge before it can detach from the lower step edge; this allows us
to say that the different adatom density calculations are decoupled.

Finally, the boundary conditions at the edges of the computational domain are taken to
be no-flux conditions; i.e.,∂ρ/∂n= 0 at the boundary, wheren is normal to the boundary.
This is equivalent to assuming that the island configuration is a mirror image on each
side of the rectangular domain. While this limits the accuracy of the behavior near the
edges of the domain, it is observed in [27] that the growth/decay rates of islands depends
most heavily upon the local geometric configuration under diffusion limited conditions.
This means that the results in the interior of the domain should remain valid despite the
imperfect approximation at the edges.

Putting this all together, for any given single terrace domain8, we decompose the
boundary0 of 8 into two parts,0+ and0−, where0+ is the boundary consisting of up
steps and0− is the boundary consisting of down steps. Therefore, for each exposed terrace
level, we must solve

1ρ(x) = 0, x ∈ 8 (2)

D
∂ρ

∂n
= −K

(
ρeq

r − ρ
)
, x ∈ 0+ (3)

D
∂ρ

∂n
= −αρ, x ∈ 0−. (4)

We illustrate this construction in Fig. 2.
Finally, given a pointx at a step edge, we need to know the net flux of adatoms atx. The

net flux, i.e., the normal speedF of the step edge in the direction of the normal, is given by
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FIG. 3. Island in a pit configuration.

the sum of the flux from below and above; thus

F(x) = −D

(
∂ρ−

∂n
(x)+ ∂ρ

+

∂n
(x)

)
, (5)

= K
(
ρeq

r (x)− ρ−(x)
)+ αρ+(x) (6)

where the+ indicates the adatom density on the upper side of the step edge and the−
indicates the adatom density of the lower side of the step edge. We will use this normal
velocity to evolve the level set method as described in Section 4.

3.1. Special Case: Island in a Pit

To test the accuracy of our numerical method against the model, we will compare our com-
puted solution with some special cases. The first special case is a circular island located in
the center of a circular pit. Suppose the center island has radiusr0 and the pit has radiusr1, as
illustrated in Fig. 3. Since this is a rotationally symmetric problem, we can reduce the dimen-
sion of our problem to one dimension and it is given by the three boundary value problems

ρ ′′(r )+ 1

r
ρ ′(r ) = 0, r0 < r < r1

(7)
Dρ ′(r0) = −K

(
ρeq

r0
− ρ(r0)

)
, Dρ ′(r1) = K

(
ρeq

r1
− ρ(r1)

)
ρ ′′(r )+ 1

r
ρ ′(r ) = 0, 0< r < r0

(8)
Dρ ′(r0) = −αρ(r0), ρ ′(r = 0) = 0

ρ ′′(r )+ 1

r
ρ ′(r ) = 0, r > r1

(9)
Dρ ′(r1) = αρ(r1), lim

r→+∞ Dρ ′(r ) = 0

Note that the radius of curvature in the boundary condition of Eq. (7) atr = r1 is taken to
be negative because the terrace edge is concave. It is easy to see that Eqs. (8) and (9) are
uniquely solved byρ(r )≡ 0, and hence do not contribute to the motion of the step edge.
We therefore turn our attention to Eq. (7).

We can solve Eq. (7) explicitly to get

ρ(r ) = ρeq
∞(D(r1+ r0)+ Kr0r1 ln(r1/r0))

−1

×
(
(Dr0+ Kr0r1 ln(r1)− Kr0r1 ln(r )) exp

(
γÄ

kTr0

)
+ (Dr1− Kr0r1 ln(r0)+ Kr0r1 ln(r )) exp

(−γÄ
kTr1

))
. (10)
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Plugging this solution into Eq. (5) forr = r0, r1 yields a pair of coupled ordinary differential
equations for the motion of the step edges located atr0 andr1,

r ′0(t) =
−DKρeq

∞(exp(γÄ/kTr0(t))− exp(−γÄ/kTr1(t)))r1(t)

D(r0(t)+ r1(t))+ Kr0(t)r1(t) ln(r1(t)/r0(t))
(11)

r ′1(t) =
−DKρeq

∞(exp(γÄ/kTr0(t))− exp(−γÄ/kTr1(t)))r0(t)

D(r0(t)+ r1(t))+ Kr0(t)r1(t) ln(r1(t)/r0(t))
. (12)

We can solve these equations numerically to arbitrary accuracy using a standard adaptive
Runge–Kutta ODE solver. Plots of these solutions are provided in Section 5.

3.2. Special Case: Three Stacked Islands

While the first test case is commonly used to derive some of the physical parameters
from experiment, it does not include a non-trivial use of the Ehrlich barrier parameter.
To test this part of our method and also to test the summing present in Eq. (5), we turn
to a different initial configuration. In this configuration we have three concentric stacked
islands as depicted in Fig. 4. Letr0, r1, r2 be the radii of the top, middle, and bottom islands,
respectively. We must therefore solve four different Laplace equations

ρ ′′(r )+ 1

r
ρ ′(r ) = 0, 0< r < r0

(13)
Dρ ′(r0) = −αρ(r0), Dρ ′(0) = 0

ρ ′′(r )+ 1

r
ρ(r ) = 0, r0< r < r1

(14)
Dρ ′(r0) = −K

(
ρeq

r0
− ρ(r0)

)
, Dρ ′(r1) = −αρ(r1)

ρ ′′(r )+ 1

r
ρ ′(r ) = 0, r1< r < r2

(15)
Dρ ′(r1) = −K

(
ρeq

r1
− ρ(r1)

)
, Dρ ′(r2) = −αρ(r2)

ρ ′′(r )+ 1

r
ρ ′(r ) = 0, r2 < r

(16)
Dρ ′(r2) = −K

(
ρeq

r2
− ρ(r2)

)
, lim

r→+∞ Dρ ′(r ) = 0.

As in the previous special case, Eqs. (13), (16) have trivial solutions given byρ(r )≡ 0 and
ρ(r )≡ ρeq

∞ exp(γÄ/kTr2), respectively, leavingρ ′(r )≡ 0 in both cases, and hence they do
not contribute to the motion of the step edges.

FIG. 4. Three concentric stacked islands configuration.
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The solutions for Eqs. (14) and (15) are the same up to certain indices, so we will just
discuss Eq. (14). The solution for (14) is given by

ρ(r ) = Kr0ρ
eq
∞ exp(γÄ/kTr0) (D + αr1(ln(r1)− ln(r )))

Dαr1+ DKr0+ Kαr0r1 ln(r1/r0)
(17)

Plugging this into Eq. (5) will contribute to the motion of edges located atr0 andr1.
If we combine both the solutions for Eqs. (14) and (15) into Eq. (5), we again get a system

of ordinary differential equations for the motion of the radiir0, r1, andr2:

r ′0(t) =
−DKαr1(t)ρ

eq
∞ exp(γÄ/kTr0(t))

Dαr1(t)+ DKr0(t)+ αKr0(t)r1(t) ln(r1(t)/r0(t))
(18)

r ′1(t) =
DKαr0(t)ρ

eq
∞ exp(γÄ/kTr0(t))

Dαr1(t)+ DKr0(t)+ αKr0(t)r1(t) ln(r1(t)/r0(t))

− DKαr2(t)ρ
eq
∞ exp(γÄ/kTr1(t))

Dαr2(t)+ DKr1(t)+ αKr1(t)r2(t) ln(r2(t)/r1(t))
(19)

r ′2(t) =
DKαr1(t)ρ

eq
∞ exp(γÄ/kTr1(t))

Dαr2(t)+ DKr1(t)+ αKr1(t)r2(t) ln(r2(t)/r1(t))
. (20)

We can again solve this using a standard ODE solver to specified accuracy. Plots can be
found in Section 5.

4. NUMERICAL METHOD

The numerical method we use to simulate annealing is a combination of the level set
method for following the evolving step edges and the finite element method for computing
the velocity. We have chosen this approach because of the requirement for accurate values
of the adatom density functionat the step edge, not just near it. We will show in Section 5
that this approach pays off, by comparing a computed solution using this method with the
test cases described in the previous section. We give a brief description of each part of the
method below, followed by how we have combined these methods.

4.1 The Level Set Method

One of the most versatile and effective ways of computing the motion of curves and
surfaces is the level set methodology developed by Osher and Sethian [30]. The calculations
and numerical methodologies introduced in [9, 30, 34, 36] have, in recent years, provided the
basis for a large collection of calculations in such areas as combustion and fluid mechanics
[46], medical imaging [23], material science [10], and etching and deposition in semi-
conductor manufacturing [1–3]. For a review and resource on level set methods, see [37].

In the level set approach, both the interface of interest and the interface velocity field are
embedded in higher dimensional functions. The main advantages of a level set approach
are that topological changes are handled naturally, the technique is unchanged in three and
higher dimensions, and finite difference schemes can be used for approximating operators
on a fixed Eulerian mesh.

Imagine a closed curve0 in the plane propagating normal to itself with speedF . We can
embed the initial position of the front as the zero level set of a higher dimensional function
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φ, and then identify the evolution of this functionφ with the propagation of the front itself
through a time-dependent initial value problem. At any time, the front is given by the zero
level set of the time-dependent level set functionφ. In order to derive an equation of the
motion for this level set functionφ, we stipulate that the zero level set of the evolving
functionφ always match the propagating hyper-surface, which means that

φ(x(t), t) = 0. (21)

By the chain rule,

φt +∇φ(x(t), t) · x′(t) = 0. (22)

Since F supplies the speed in the outward normal direction,x′(t) · n= F , wheren=
∇φ/‖∇φ‖, and this yields an evolution equation forφ, namely,

φt + F‖∇φ‖ = 0
(23)

φ(x, t = 0) given.

This is the level set equation introduced by Osher and Sethian [30].
As analyzed by Sethian in [35], the efficient solution of these front propagation problems

requires the use of upwind difference schemes and schemes borrowed from the solution
of hyperbolic conservation laws. A detailed discussion of such schemes in the context of
interface propagation schemes may be found in [37].

One of the drawbacks to the level set approach is its requirement that the speed function
F be given in the entire domain ofφ. This information is not always available. For example,
in our discussion above, we generate the speed of the step edges on the step edge, but we do
not want to rely on the gradient of the density functionρ to supply velocities in the rest of
the domain because of numerical stability issues. Fortunately, there is a technique for taking
a speedF known on the interface only and extending it in a reasonable way to the rest of
the domain ofφ. That technique is based upon the fast marching method described next.

4.2. The Fast Marching Method

In order for the level set method to be applied, the velocity fieldF itself must be defined
on the entire domain ofφ, not just the zero level set corresponding to the interface itself.
We can be more precise by rewriting the level set equation as

φt + Fext‖∇φ‖ = 0 (24)

whereFext is some velocity field which, at the zero level set, equals the given speedF . In
other words,

Fext = F on φ = 0.

This new velocity fieldFext is known as the “extension velocity.”
In [4], a technique was introduced for building this extension velocity fieldFext from a

velocity field given on the front in a highly efficient and accurate manner. This technique
relied on the Fast Marching Method [38], which is the optimal technique for solving the
Eikonal equation.
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Briefly, the Fast Marching method solves an equation of the form

‖∇u‖ = 1

G(x, y)
(25)

by first replacing the gradient by suitable upwind operators and then systematically advanc-
ing the front by marching outwards from the boundary data in an upwind fashion. The key
to the algorithm lies in the observation that an upwind operator implies a causality, and
hence grid points with a given value foru cannot be affected by those with a bigger value.
Hence, as the solution is advanced, we can maintain a heap sort which keeps track of the
smallest element to be updated, and thus always advances the solution “downwind” of that
point. Through the use of this sorting algorithm, each point in the domain is visitedonly
once, rather than requiring any iteration; the resulting technique has a total operation count
of O(N log N).

This technique is then used to construct the extension velocityFext by computing the
signed distance functionu (obtained by lettingG(x, y)= 1 in Eq. (25)) while simultaneously
solving the associated equation

∇Fext · ∇u = 0. (26)

The resulting velocity fieldFext equals the velocity on the front and is reasonably smooth
off of the front.

4.3. Finite Element Method

To generate the velocity at the step edges, we must solve the elliptic equation (2). Ideally,
we would solve this problem on the existing fixed mesh on which we are evolving the step
edges, but this would only give values for the adatom density at points near the step edge,
not on it. Using judicious applications of interpolation between mesh points, one can get
approximations for the adatom density function at the step edge, but the accuracy of such
attempts does not appear to be as good as is needed for advancing the level set contours.

For that reason we have turned to the finite element method to handle Eq. (2). It is a very
well established and successful method for solving elliptic equations, and error estimates for
the accuracy of solutions can be obtained. Furthermore, by placing nodes precisely where
we need them to initialize the fast marching velocity extension method described above,
we get good approximations for the adatom density function, and hence the speed function
F necessary to drive the level set representation of the step edges as given by Eq. (5). For
a more detailed description of the finite element method, there are many texts available on
the subject; for example, see [41].

In our implementation of this method, we use a Galerkin method with linear triangular
elements, and assumed linear variation of the boundary data. This gives us a sparse linear
system which we solve using a conjugate gradient method. We solve all terrace domains
with the same step height simultaneously, so we solve one such finite element system for
each exposed atomic layer.

We now detail the connection between the finite element method mesh and the level set
method. To illustrate this point, suppose we are solving the elliptic equation on a terrace
domain8 at step height̀ 8 which is bounded by step edges. The finite elements are
constructed by decomposing the level set mesh into triangular elements. Consider a set of
four mesh points from the level set mesh which are arranged in a square. If all four points
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FIG. 5. Examples of finite element mesh construction.

are contained in8, then the square is cut in half down its diagonal into two triangles, each
becoming a single finite element.

The difficult case is when one or more of the points lie outside8. Each mesh point is
assigned the terrace level at that mesh point; call it`i j . There are three possibilities for each
of the mesh points: (1)̀i j <`8, (2)`i j = `8, (3)`i j >`8. Three independent possibilities at
each of four different mesh points leads to 34= 81 different cases and all but two (all case (1)
or all case (3)) lead to one or more triangular elements. We illustrate these different cases with
two examples.

As a simple example, suppose that three of the mesh points are in8, but the upper left
node is not (see Fig. 5a). The best choice we found for this case is to place a node at the
center of mass of the truncated square, and then form triangles from the center point out to
each of the points on the perimeter as illustrated in Fig. 5a.

For an example of how multiple level sets can be useful, consider the case where the two
left mesh points are lower thaǹ8 and the two right mesh points are higher, as in Fig. 5b.
In this case, just because none of the mesh points are inside8 does not mean that there are
no elements to be included. In this case, the level set functions are used to locate the region
which is at the correct height, between the left and the right. The resulting region is then
triangulated into two triangles as illustrated. Here we see if a single level set function were
used, we would not be able to pinpoint the location of each of the individual intermediate
steps such as in this example. The other 77 cases which produce triangular elements are
handled in a similar fashion. The boundary conditions for the domain are also incorporated
in this process.

After the finite element mesh is constructed and the resulting linear system is solved, we
are left with explicit values for the adatom densityon the interface. No further interpolation
is necessary to evaluate the flux at the boundary or to compute the resulting step edge velocity
necessary for advancing the level set method. The computed velocity is then extended to
the domain of the level set functions using the fast marching method as discussed above.

This type of finite-element implementation results in a first-order accurate solution.
Higher order solutions are possible using higher order elements, but they come at a higher
computational price. We found we get adequate accuracy using this method, as demonstrated
by the test case solutions in Section 5.

4.4. The Completed Algorithm

We begin our description of the total algorithm with our representation of the step edges.
In our implementation, we assign a single level set functionφ` to each incomplete atomic
layer `. We illustrate the relationship between theφ` and the physical configuration in
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FIG. 6. Level set representation of single atomic layer islands.

Fig. 6. An island at atomic layer̀ is present wheneverφ`(x)≥ 0, and hence the step edge
is given by{x :φ`(x)= 0}. While it is not necessary, it is generally the case that for a given
x, φ`(x)≥φ`+1(x) indicating that there are no overhangs.

This approach differs from that in [16], where a single level set function is used to
represent all atomic layers. We chose our approach instead because the level set method
has better stability properties if the level set function itself does not have large variation
in the gradient‖∇φ‖. In fact, by using the velocity extension method described above, we
can maintain‖∇φ‖≈1 almost everywhere without costly reinitialization. Eliminating the
need for reinitialization reduces computational cost and the amount of artificial diffusion
generated by the numerical method.

Given the level set representation of the surface configuration, we next must construct
the sequence of elliptic problems to be solved via the finite element method. We generate
a single elliptic equation for each exposed atomic layer. The mesh generation for layer` is
done by passing through the mesh to look for all instances where the surface is at height
`, i.e. φ`≥ 0≥φ`+1. The boundary of the domain consists of the down steps0− where
φ`= 0 and also the up steps0+ whereφ`+1= 0. Every grid point in the mesh that is in the
domain becomes a node as well as every intersection point between the boundary and grid
lines. The entire domain is then triangulated using these nodes. For down steps, the Ehrlich
barrier parameterα is a constant independent of the local geometry. For up steps, we use
finite differences to compute an approximation to the local curvatureκ of the boundary
using the formula that can be found in [9], [10], or [30]. This value can then be inserted
into the Gibbs–Thompson relation by

exp

(
γÄ

kTr

)
= exp

(
γÄκ

kT

)
,

where we have replaced the local radius of curvaturer with the inverse of the curvatureκ.
We use the conjugate gradient method to solve the sparse linear systems, then use Eq. (5)
to compute the speed of the step edges.
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Now that we have the velocity of the step edge itself, we use the fast marching method to
generate a velocity extension for eachφ` which extends the step edge velocity outward to
the rest of the domain ofφ`. This velocity extension is generated in such a way that‖φ`‖≈1
is maintained. This ensures a stable calculation and eliminates the need for reinitialization.
We use the extended velocity to advanceφ` via the level set evolution Eq. (23) to complete
a single time step.

It is easy to see from the exponential term in Eq. (1) that a relatively small island can result
in some very large velocities at the step edge. This presents a problem in solving Eq. (2), and
also in maintaining stability of the explicit level set method. We handle the first difficulty by
placing a minimum value for the local radius of curvature to correspond to the diameter of a
single adatom. Thus, the smallest representable island consists of a 2× 2 atom square island.

The second problem is easily dealt with by using adaptive time stepping which is inversely
proportional to the maximum computed velocity. Adaptive time stepping is almost necessary
when we consider that in a typical calculation involving 30–50 islands, the ratio of the largest
time step to the smallest is on the order of 106.

5. RESULTS

To demonstrate the accuracy of the method we have outlined above, we will compute
solutions to the two model problems presented in Section 3. We will also compare our com-
puted solution against a time sequence of images taken from an annealing experiment. By
comparing well against both theory and experiment we will demonstrate that this method is
a viable means of deriving the correct physical parameters for our model with the associated
properties of the given material.

We begin with the comparison to known solutions of the mathematical model. In Fig. 7,
we show a plot of the solution of the Island in a Pit model problem with a plot of our
computed fully 2-dimensional solution. In the graph, we are comparing the total area of the

FIG. 7. Plot of full simulation vs ODE solution for island in a pit.



118 D. L. CHOPP

FIG. 8. Plot of full simulation vs ODE solution for top island.

center island as it decays in time. The computed solution does not quite decay fast enough
in the final moments, but the overall agreement is very good, and we predict the time of the
dissolution of the center island with less than 1% error. Note that for this calculation, we
used parameter values ofD= 3.2959× 10−4, K = 1, ρeq

∞= 12.5825, andα= 0.5.
The previous comparison is not quite complete in that it only consists of up-step bound-

aries. None of the down-step boundaries contribute to the evolution as noted earlier. The
next comparison combines both up-step and down-step boundaries. In this case, we have
three concentric islands stacked on top of each other. The middle island step edge then
gets non-zero contributions from both the up-step and down-step boundary conditions. In
Figs. 8 and 9 we show the total area of each of the top and middle islands as they evolve.
The top, smallest island decays, then dissolves. The middle island grows until the top island
dissolves and then begins to decay. This time we predict the dissolution of the smallest
island to less than 2% error. If we check for mass conservation of the method, the mass is
preserved to within 0.07% error so we have very good mass conservation.

Finally, we take an image of initial experimental conditions and compare our predicted
evolution of the islands with the experimental data. In Fig. 10 we show the experimental data
in the left column and our corresponding computed solution in the right column. Note that
our computed solution correctly predicts the expansion of a denuded zone around the larger
islands. The fastest islands to decay are predicted to be the ones which are relatively small
and begin near much larger islands. This leaves the larger islands gradually expanding a
denuded zone around them as seen in the final image. While our solutions compare favorably
qualitatively, we do not yet completely agree on the time elapsed.

There are several causes for discrepancy between the model and the experiment that
should be mentioned. First, there is some discrepancy in the transfer of experimental images
into a format suitable for our code. As can be seen by the initial numerical configuration,
the data is very rough, so some preprocessing of the experimental data may be necessary
to get an accurate start. This variation can play a role in the order of dissolution of the



FIG. 9. Plot of full simulation vs ODE solution for middle island.

FIG. 10. Time sequence of annealing TiN (002) at 800◦C [19] compared with computed solution.
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smaller islands, but clearly the selection of the larger islands over longer time scales still
holds. Second, we must employ boundary conditions at the sides of the domain which are
naturally going to differ from the experimental conditions. Our present algorithm employs
zero-flux boundary conditions which tends to preserve islands near the domain boundary
longer than they should. We are investigating alternative boundary conditions that will
produce more realistic results. Third, we have not yet derived all the correct values for the
physical parametersK , D, α, andρeq

∞. We plan to use this tool to deduce those parameters
for the model by tuning them until we get agreement with experiment.

6. CONCLUSION

In this paper, we have presented an accurate numerical method, which successfully
predicts the motion of single atomic layer islands. The method compares very favorably
with solutions of model problems and agrees qualitatively with physical experiments. The
method has been demonstrated to correctly predict the time of dissolution of islands in
model problems while also maintaining very good conservation of mass. This is a tribute
to the use of the finite element method to compute the adatom density on the terraces. We
have also predicted the correct qualitative behavior of a given experiment. By adjusting
parameters to match the physical experiment more accurately, and armed with the results
from model problems, we will be able to confidently predict the critical physical constants
necessary for any material simulations.

This method also introduces the coupling of level sets with traditional finite element
methods. This coupling promises to deliver greater accuracy and reliability into the solution
of elliptic equations used in the computation of interface speed functions while still pre-
serving the essential connection of level set methods to the methods from hyperbolic con-
servation laws.

We will use this method to derive critical physical constants necessary for accurate
modeling of a given material. The material we are currently investigating is TiN, but it is
clear that this same technique can be applied to a number of different materials to derive
basic physical constants. These constants can then be used in various growth models so that
accurate predictions about thin-film growth can be made.
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